Preview

Real-World Data & Evidence

Advanced search

Methods for drug safety signal detection using routinely collected observational electronic health care data: a systematic review

https://doi.org/10.37489/2782-3784-myrwd-35

EDN: BNYASS

Abstract

Signal detection is a crucial step in the discovery of post-marketing adverse drug reactions. There is a growing interest in using routinely collected data to complement established spontaneous report analyses.

The aim. This work aims to systematically review the methods for drug safety signal detection using routinely collected healthcare data and their performance, both in general and for specific types of drugs and outcomes.

Metodology. We conducted a systematic review following the PRISMA guidelines, and registered a protocol in PROSPERO.

Results. The review included 101 articles, among which there were 39 methodological works, 25 performance assessment papers, and 24 observational studies. Methods included adaptations from those used with spontaneous reports, traditional epidemiological designs, methods specific to signal detection with real-world data. More recently, implementations of machine learning have been studied in the literature. Twenty-five studies evaluated method performances, 16 of them using the area under the curve (AUC) for a range of positive and negative controls as their main measure. Despite the likelihood that performance measurement could vary by drug-event pair, only 10 studies reported performance stratified by drugs and outcomes, in a heterogeneous manner. The replicability of the performance assessment results was limited due to lack of transparency in reporting and the lack of a gold standard reference set.

About the Authors

A. Sh. Motrinchuk
Federal State Budgetary Educational Institution of Higher Education "First St. Petersburg State Medical University named after Academician I.P. Pavlov" of the Ministry of Health of the Russian Federation
Russian Federation

Motrinchuk Aiten S. — resident of the department of Clinical Pharmacology and Evidence-Based Medicine

St. Petersburg


Competing Interests:

The authors declare no conflict of interest.



O. A. Loginovskaya
Federal State Budgetary Educational Institution of Higher Education "First St. Petersburg State Medical University named after Academician I.P. Pavlov" of the Ministry of Health of the Russian Federation; Flex Databases LLC
Russian Federation

Loginovskaya Olga A. — Director of Quality and Corporate Development Flex Databases; Assistant of the Department Of Clinical Pharmacology and Evidence-Based Medicine Pavlov First Saint Petersburg State Medical University

St. Petersburg


Competing Interests:

The authors declare no conflict of interest.



V. P. Kolbatov
Flex Databases LLC
Russian Federation

Kolbatov Vladimir P. — The best signal specialist on Flex Databases

St. Petersburg


Competing Interests:

The authors declare no conflict of interest.



References

1. Patadia VK, Coloma P, Schuemie MJ, et al. Using real-world healthcare data for pharmacovigilancesignal detection — the experience of the EU-ADR project. Expert Rev Clin Pharmacol. 2015 Jan;8(1):95-102. doi: 10.1586/17512433.2015.992878.

2. CIOMS. Working Group VIII. Practical Aspects of Signal Detection in Pharmacovigilance. Council for International Organizations of Medical Sciences (CIOMS); 2010.

3. Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009 Jun;18(6):427-36. doi: 10.1002/pds.1742.

4. Moore TJ, Furberg CD. Electronic Health Data for Postmarket Surveillance: A Vision Not Realized. DrugSaf. 2015 Jul;38(7):601-10. doi: 10.1007/s40264-015-0305-9.

5. Langan SM, Schmidt SA, Wing K, et al. The reporting of studies conducted using observational routinely collected health data statement for pharmacoepidemiology (RECORD-PE). BMJ. 2018 Nov 14;363:k3532. doi: 10.1136/bmj.k3532.

6. Kim J, Kim M, Ha JH, et al. Signal detection of methylphenidate by comparing a spontaneous reporting database with a claims database. Regul Toxicol Pharmacol. 2011 Nov;61(2):154-60. doi: 10.1016/j.yrtph.2011.03.015.

7. A Wahab I, Pratt NL, Kalisch LM, Roughead EE. Comparing time to adverse drug reaction signals in a spontaneous reporting database and a claims database: a case study of rofecoxib-induced myocardial infarction and rosiglitazone-induced heart failure signals in Australia. Drug Saf. 2014 Jan;37(1):53-64. doi: 10.1007/s40264-013-0124-9.

8. Reps J, Feyereisl J, Garibaldi J, et al. Investigating the detection of adverse drug events in a UK general practice electronic health-care database. Paper presented at: UKCI 2011 — Proceedings of the 11th UK Workshop on Computational Intelligence; 2011; Manchester UK,167–173. doi: 10.48550/arXiv.1307.1078.

9. Pacurariu AC, Straus SM, Trifirò G, et al. Useful Interplay Between Spontaneous ADR Reports and Electronic Healthcare Records in Signal Detection. Drug Saf. 2015 Dec;38(12):1201-10. doi: 10.1007/s40264-015-0341-5.

10. Patadia VK, Schuemie MJ, Coloma P, et al. Evaluating performance of electronic healthcare records and spontaneous reporting data in drug safety signal detection. Int J Clin Pharm. 2015 Feb; 37(1):94-104. doi: 10.1007/s11096-014-0044-5.

11. Demailly R. Détection automatisée de signaux en pharmacovigilance chez la femme enceinte à partir de bases médico-administratives. HAL; 2021.

12. Schuemie MJ. Safety surveillance of longitudinal databases: further methodological considerations. Pharmacoepidemiol Drug Saf. 2012 Jun;21(6):670-2; author reply 673-5. doi: 10.1002/pds.3259.

13. Norén GN, Hopstadius J, Bate A, Edwards IR. Safety surveillance of longitudinal databases: methodological considerations. Pharmacoepidemiol Drug Saf. 2011 Jul;20(7):714-7. doi: 10.1002/pds.2151.

14. Coloma PM, Avillach P, Salvo F, et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 2013 Jan;36(1):13-23. doi: 10.1007/s40264-012-0002-x.

15. Gruber S, Chakravarty A, Heckbert SR, et al. Design and analysis choices for safety surveillance evaluations need to be tuned to the specifics of the hypothesized drug-outcome association. Pharmacoepidemiol Drug Saf. 2016 Sep;25(9):973-81. doi: 10.1002/pds.4065.

16. Madigan D, Ryan PB, Schuemie M. Does design matter? Systematic evaluation of the impact of analytical choices on effect estimates in observational studies. Ther Adv Drug Saf. 2013 Apr;4(2):53-62. doi: 10.1177/2042098613477445.

17. Madigan D, Stang P, Berlin J, et al. A systematic statistical approach to evaluating evidence from observational studies. Annu Rev Stat Appl. 2014;1:11-39. doi: 10.1146/annurev-statistics-022513-115645.

18. Jeong E, Park N, Choi Y, Park RW, Yoon D. Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals. PLoS One. 2018 Nov 21;13(11):e0207749. doi: 10.1371/journal.pone.0207749. Erratum in: PLoS One. 2019 Apr 9;14(4):e0215344.

19. Fan DF, Yu YC, Ding XS, et al. Exploring the drug-induced anemia signals in children using electronic medical records. Expert Opin Drug Saf. 2019 Oct;18(10):993-999. doi: 10.1080/14740338.2019.1645832.

20. Lee S, Choi J, Kim HS, et al. Standard-based comprehensive detection of adverse drug reaction signals from nursing statements and laboratory results in electronic health records. J Am Med Inform Assoc. 2017 Jul 1;24(4):697-708. doi: 10.1093/jamia/ocw168.

21. Wei R, Jia LL, Yu YC, et al. Pediatric drug safety signal detection of non-chemotherapy drug-induced neutropenia and agranulocytosis using electronic healthcare records. Expert Opin Drug Saf. 2019 May;18(5):435-441. doi: 10.1080/14740338.2019.1604682.

22. Mansour A, Ying H, Dews P, et al. Fuzzy rule-based approach for detecting adverse drug reaction signal pairs. Paper presented at: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013). The authors — Published by Atlantis Press. 2013;384–391. doi: 10.2991/eusflat.2013.60.

23. Park MY, Yoon D, Lee K, et al. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepidemiol Drug Saf. 2011 Jun;20(6):598-607. doi: 10.1002/pds.2139.

24. Tham MY, Ye Q, Ang PS, et al. Application and optimisation of the Comparison on Extreme Laboratory Tests (CERT) algorithm for detection of adverse drug reactions: Transferability across national boundaries. Pharmacoepidemiol Drug Saf. 2018 Jan;27(1):87-94. doi: 10.1002/pds.4340.

25. Lai EC, Hsieh CY, Kao Yang YH, Lin SJ. Detecting potential adverse reactions of sulpiride in schizophrenic patients by prescription sequence symmetry analysis. PLoS One. 2014 Feb 27;9(2):e89795. doi: 10.1371/journal.pone.0089795.

26. Zhan C, Roughead E, Liu L, et al. A data-driven method to detect adverse drug events from prescription data. J Biomed Inform. 2018 Sep;85:10-20. doi: 10.1016/j.jbi.2018.07.013.

27. Zhan C, Roughead E, Liu L, et al. Detecting potential signals of adverse drug events from prescription data. Artif Intell Med. 2020 Apr;104:101839. doi: 10.1016/j.artmed.2020.101839.

28. Pratt N, Chan EW, Choi NK, et al. Prescription sequence symmetry analysis: assessing risk, temporality, and consistency for adverse drug reactions across datasets in five countries. Pharmacoepidemiol Drug Saf. 2015 Aug;24(8):858-64. doi: 10.1002/pds.3780.

29. Hoang T, Liu J, Roughead E, et al. Supervised signal detection for adverse drug reactions in medication dispensing data. Comput Methods Programs Biomed. 2018 Jul;161:25-38. doi: 10.1016/j.cmpb.2018.03.021.

30. Arnaud M, Bégaud B, Thurin N, et al. Methods for safety signal detection in health-care databases: a literature review. Expert Opin Drug Saf. 2017 Jun;16(6):721-732. doi: 10.1080/14740338.2017.1325463.

31. Karimi S, Wang C, Metke-Jimenez A, et al. Text and data mining techniques in adverse drug reaction detection. ACM Comput Surv. 2015;47(4):1-39. doi: 10.1145/2719920.

32. Kaguelidou F, Durrieu G, Clavenna A. Pharmacoepidemiological research for the development and evaluation of drugs in pediatrics. Therapie. 2019 Apr;74(2):315-324. doi: 10.1016/j.therap.2018.09.077.

33. Jones JK. The role of data mining technology in the identification of signals of possible adverse drug reactions: value and limitations. Curr Ther Res Clin Exp. 2001;62(9):664-672. doi: 10.1016/S0011-393X%2801%2980072-2.

34. Nelson JC, Ulloa-Pérez E, Bobb JF, Maro JC. Leveraging the entire cohort in drug safety monitor-ing: part 1 methods for sequential surveillance that use regression adjustment or weighting to control confounding in a multisite, rare event, distributed data setting. J Clin Epidemiol. 2019 Aug;112:77-86. doi: 10.1016/j.jclinepi.2019.04.012.

35. Lai EC, Pratt N, Hsieh CY, et al. Sequence symmetry analysis in pharmacovigilance and pharmacoepidemiologic studies. Eur J Epidemiol. 2017 Jul; 32(7):567-582. doi: 10.1007/s10654-017-0281-8.

36. Coloma PM, Trifirò G, Patadia V, Sturken boom M. Postmarketing safety surveillance: where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013 Mar;36(3):183-97. doi: 10.1007/s40264-013-0018-x.

37. Wisniewski AF, Bate A, Bousquet C, et al. Good Signal Detection Practices: Evidence from IMI PROTECT. Drug Saf. 2016 Jun;39(6):469-90. doi: 10.1007/s40264-016-0405-1.

38. Prieto-Merino D, Quartey G, Wang J, Kim J. Why a Bayesian approach to safety analysis in pharmacovigilance is important. Pharm Stat. 2011 Nov-Dec;10(6):554-9. doi: 10.1002/pst.524.

39. Suling M, Pigeot I. Signal detection and monitoring based on longitudinal healthcare data. Pharmaceutics. 2012 Dec 13;4(4):607-40. doi: 10.3390/pharmaceutics4040607.

40. Coloma PM, Trifirò G, Schuemie MJ, et al. Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiol Drug Saf. 2012 Jun;21(6):611-21. doi: 10.1002/pds.3197.

41. Gault N, Castañeda-Sanabria J, De Rycke Y, et al. Self-controlled designs in pharmacoepidemiology involving electronic healthcare databases: a systematic review. BMC Med Res Methodol. 2017 Feb 8;17(1):25. doi: 10.1186/s12874-016-0278-0.

42. Lian Duan L, Khoshneshin M, Street WN, Liu M. Adverse drug effect detection. IEEE J Biomed Health Inform. 2013 Mar;17(2):305-11. doi: 10.1109/TITB.2012.2227272.

43. Sauzet O, Carvajal A, Escudero A, et al. Illustration of the weibull shape parameter signal detection tool using electronic healthcare record data. Drug Saf. 2013 Oct;36(10):995-1006. doi: 10.1007/s40264-013-0061-7.

44. Zorych I, Madigan D, Ryan P, Bate A. Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res. 2013 Feb;22(1):39-56. doi: 10.1177/0962280211403602.

45. Schuemie MJ, Coloma PM, Straatman H, et al. Using electronic health care records for drug safety signal detection: a comparative evaluation of statistical methods. Med Care. 2012 Oct;50(10):890-7. doi: 10.1097/MLR.0b013e31825f63bf.

46. Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol-DrugSaf. 2011 Mar;20(3):292-9. doi: 10.1002/pds.2051.

47. Suchard MA, Zorych I, Simpson SE, et al. Empirical performance of the self-controlled case series design: lessons for developing a risk identification and analysis system. Drug Saf. 2013 Oct;36 Suppl 1:S83-93. doi: 10.1007/s40264-013-0100-4.

48. Zhou X, Douglas IJ, Shen R, Bate A. Signal Detection for Recently Approved Products: Adapting and Evaluating Self-Controlled Case Series Method Using a US Claims and UK Electronic Medical Records Database. Drug Saf. 2018 May;41(5):523-536. doi: 10.1007/s40264-017-0626-y.

49. Morel M, Bacry E, Gaïffas S, et al. ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection. Biostatistics. 2020 Oct 1;21(4):758-774. doi: 10.1093/biostatistics/kxz003.

50. Schuemie MJ, Trifirò G, Coloma PM, et al. Detecting adverse drug reactions following long-term exposure in longitudinal observational data: The exposure-adjusted self-controlled case series. Stat Methods Med Res. 2016 Dec;25(6):2577-2592. doi: 10.1177/0962280214527531.

51. Simpson SE. A positive event dependence model for self-controlled case series with applications in postmarketing surveillance. Biometrics. 2013 Mar;69(1):128-36. doi: 10.1111/j.1541-0420.2012.01795.x.

52. Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic healthcare data. Pharmacoepidemiol Drug Saf. 2010 Aug;19(8):858-68. doi: 10.1002/pds.1926.

53. Ryan PB, Schuemie MJ, Gruber S, et al. Empirical performance of a new user cohort method: lessons for developing a risk identification and analysis system. Drug Saf. 2013 Oct;36 Suppl 1:S59-72. doi: 10.1007/s40264-013-0099-6.

54. Madigan D, Schuemie MJ, Ryan PB. Empirical performance of the case-control method: lessons for developing a risk identification and analysis system. Drug Saf. 2013 Oct;36 Suppl1:S73-82. doi: 10.1007/s40264-013-0105-z.

55. Grosso A, Douglas I, MacAllister R, et al. Use of the self-controlled case series method in drug safety assessment. Expert Opin Drug Saf. 2011 May;10(3):337-40. doi: 10.1517/14740338.2011.562187.

56. Murphy S, Castro V, Colecchi J, et al. Partners HealthCare OMOP Study Report; 2011.

57. Takeuchi Y, Shinozaki T, Matsuyama Y. A comparison of estimators from self-controlled case series, case-crossover design, and sequence symmery analysis for pharmacoepidemiological studies. BMC Med Res Methodol. 2018 Jan 8;18(1):4. doi: 10.1186/s12874-017-0457-7.

58. Thurin NH, Lassalle R, Schuemie M, et al. Empirical assessment of case-based methods for drug safety alert identification in the French National Healthcare System database (SNDS): Methodology of the ALCAPONE project. Pharmacoepidemiol Drug Saf. 2020 Sep;29(9):993-1000. doi: 10.1002/pds.4983.

59. Norén G, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Disc. 2010;20:361-387. doi: 10.1007/s10618-009-0152-3.

60. Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat Methods Med Res. 2013 Feb;22(1):57-69. doi: 10.1177/0962280211403604.

61. Jin H, Chen J, He H, et al. Signaling potential adverse drug reactions from administrative health databases. IEEE Trans Knowl Data Eng. 2010;22(6):839-853. doi: 10.1109/TKDE.2009.212.

62. Reps J, Garibaldi J, Aickelin U, et al. Comparison of algorithms that detect drug side effects using electronic healthcare databases. Soft Comput. 2013;17(12):2381-2397. doi: 10.2139/ssrn.2823255.

63. Jin H, Chen J, Kelman C, et al. Mining unexpected associations for signalling potential adverse drug reactions from administrative health databases. Lecture Notes in Computer Science. 2006;3918:867-876. doi: 10.1007/11731139_101.

64. Reps J, Garibaldi J, Aickelin U, et al. Comparing data-mining algorithms developed for longitudinal observational databases. Paper presented at: 2012 12th UK Workshop on Computational Intelligence, UKCI 2012; 2012, Edinburgh, UK. doi: 10.1109/UKCI.2012.6335771.

65. Ji Y, Ying H, Dews P, et al. An exclusive causal-leverage measure for detecting adverse drug reactions from electronic medical records. Paper presented at: Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS; 2011, El Paso. doi: 10.1109/NAFIPS.2011.5751957.

66. Ji Y, Ying H, Dews P, et al. A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans Inf Technol Biomed. 2011 May;15(3):428-37. doi: 10.1109/TITB.2011.2131669.

67. Ji Y, Ying H, Tran J, et al. A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs. IEEE Trans Knowl Data Eng. 2013;25(4):721-733. doi: 10.1109/TKDE.2012.28.

68. Hallas J, Wang SV, Gagne JJ, et al. Hypothesis-free screening of large administrative databases for unsuspected drug-outcome associations. Eur J Epidemiol. 2018 Jun;33(6):545-555. doi: 10.1007/s10654-018-0386-8.

69. Arnaud M, Bégaud B, Thiessard F, et al. An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study. Drug Saf. 2018 Apr;41(4):377-387. doi: 10.1007/s40264-017-0618-y.

70. Hellfritzsch M, Rasmussen L, Hallas J, Pottegård A. Using the Symmetry Analysis Design to Screen for Adverse Effects of Non-vitamin K Antagonist Oral Anticoagulants. Drug Saf. 2018 Jul;41(7):685-695. doi: 10.1007/s40264-018-0650-6.

71. Wahab IA, Pratt NL, Ellett LK, Roughead EE. Sequence Symmetry Analysis as a Signal Detection Tool for Potential Heart Failure Adverse Events in an Administrative Claims Database. Drug Saf. 2016 Apr;39(4):347-54. doi: 10.1007/s40264-015-0391-8.

72. Zhou X, Bao W, Gaffney M, et al. Assessing performance of sequential analysis methods for active drug safety surveillance using observational data. J Biopharm Stat. 2018;28(4):668-681. doi: 10.1080/10543406.2017.1372776.

73. Kulldorff M, Davis R, Kolczak M, et al. A maximized sequential probability ratio test for drug and vaccine safety surveillance. Seq Anal. 2011;30:58-78. doi: 10.1080/07474946.2011.539924.

74. Brown JS, Kulldorff M, Chan KA, Davis RL, et al. Early detection of adverse drug events within population-based health networks: application of sequential testing methods. Pharmacoepidemiol Drug Saf. 2007 Dec;16(12):1275-84. doi: 10.1002/pds.1509.

75. Brown JS, Kulldorff M, Petronis KR, et al. Early adverse drug event signal detection within population-based health networks using sequential methods: key methodologic considerations. Pharmacoepidemiol Drug Saf. 2009 Mar;18(3):226-34. doi: 10.1002/pds.1706.

76. Cook AJ, Tiwari RC, Wellman RD, et al. Statistical approaches to group sequential monitoring of postmarket safety surveillance data: current state of the art for use in the Mini-Sentinel pilot. Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:72-81. doi: 10.1002/pds.2320.

77. Li L. A conditional sequential sampling procedure for drug safety surveillance. Stat Med. 2009 Nov 10;28(25):3124-38. doi: 10.1002/sim.3689.

78. Kulldorff M, Fang Z, Walsh SJ. A tree-based scan statistic for database disease surveillance. Biomet-rics. 2003 Jun;59(2):323-31. doi: 10.1111/1541-0420.00039.

79. Kulldorff M, Dashevsky I, Avery TR, et al. Drug safety data mining with a tree-based scan statistic. Pharmacoepidemiol Drug Saf. 2013 May;22(5):517-23. doi: 10.1002/pds.3423.

80. HuybrechtsKF, KulldorffM, Hernández-DíazS, etal. Active Surveillance of the Safety of Medications Used During Pregnancy. Am J Epidemiol. 2021 Jun 1;190(6):1159-1168. doi: 10.1093/aje/kwaa288.

81. Schachterle SE, Hurley S, Liu Q, et al. An Implementation and Visualization of the Tree-Based Scan Statistic for Safety Event Monitoring in Longitudinal Electronic Health Data. Drug Saf. 2019 Jun;42(6):727-741. doi: 10.1007/s40264-018-00784-0.

82. Brown JS, Petronis KR, Bate A, et al. Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic. Pharmaceutics. 2013 Mar 14;5(1):179-200. doi: 10.3390/pharmaceutics5010179.

83. Reps JM, Garibaldi JM, Aickelin U, et al. A supervised adverse drug reaction signalling framework imitating Bradford Hill's causality considerations. J Biomed Inform. 2015 Aug;56:356-68. doi: 10.1016/j.jbi.2015.06.011.

84. Whalen E, Hauben M, Bate A. Time Series Disturbance Detection for Hypothesis-Free Signal Detection in Longitudinal Observational Databases. Drug Saf. 2018 Jun;41(6):565-577. doi: 10.1007/s40264-018-0640-8.

85. Karlsson I, Zhao J. Dimensionality reduction with random indexing: an application on adverse drug event detection using electronic health records. Paper presented at: Proceedings of IEEE Symposium on Computer-Based Medical Systems; 2014; New-York, 304–307. doi: 10.1109/CBMS.2014.22.

86. Reps JM, Garibaldi JM, Aickelin U, et al. Signalling paediatric side effects using an ensemble of simple study designs. Drug Saf. 2014 Mar;37(3):163-70. doi: 10.1007/s40264-014-0137-z.

87. Bagattini F, Karlsson I, Rebane J, Papapetrou P. A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records. BMC Med Inform Decis Mak. 2019 Jan 10;19(1):7. doi: 10.1186/s12911-018-0717-4.

88. Demailly R, Escolano S, Haramburu F, Tubert-Bitter P, Ahmed I. Identifying Drugs Inducing Prematurity by Mining Claims Data with High-Dimensional Confounder Score Strategies. Drug Saf. 2020 Jun;43(6):549-559. doi: 10.1007/s40264-020-00916-5.

89. Bampa M, Papapetrou P. Mining adverse drug events using multiple feature hierarchies and patient history windows. Paper presented at: IEEE International Conference on Data Mining Workshops, ICDMW, volume 2019; 2019; Beijing, China, 925–932. doi: 10.1109/ICDMW.2019.00135.

90. Zhao J, Henriksson A, Kvist M, et al. Handling Temporality of Clinical Events for Drug Safety Surveillance. AMIA Annu Symp Proc. 2015 Nov5;2015:1371-80.

91. DuMouchel W, Ryan PB, Schuemie MJ, Madigan D. Evaluation of disproportionality safety signaling applied to healthcare databases. Drug Saf. 2013 Oct;36 Suppl1:S123-32. doi: 10.1007/s40264-013-0106-y.

92. Norén G, Hopstadius J, Bate A, Edwards IR. Safety surveillance of longitudinal databases: results on real-world data. Pharmacoepidemiol Drug Saf. 2012;21(6):673-5. doi: 10.1002/pds.3258.


Review

For citations:


Motrinchuk A.Sh., Loginovskaya O.A., Kolbatov V.P. Methods for drug safety signal detection using routinely collected observational electronic health care data: a systematic review. Real-World Data & Evidence. 2023;3(2):42-55. (In Russ.) https://doi.org/10.37489/2782-3784-myrwd-35. EDN: BNYASS

Views: 729


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3784 (Online)