Possibilities of pharmacological thromboprophylaxis in microsurgery in real-world clinical practice
https://doi.org/10.37489/2782-3784-myrwd-065
EDN: JJYBMV
Abstract
Introduction. Thromboembolic complications represent several pathological processes and remain a common complication of most surgical interventions and one of the leading causes of failure in free flap transplantation. Thrombosis at the anastomotic site is not only the most common cause of failure in microsurgical operations, but it is also one of the factors leading to impaired circulation in free flaps and, as a consequence, the ineffectiveness of the performed treatment.
Objective. The current review discusses the numerous ways of thromboprophylaxis that can play a role in ensuring flap survival after a well-performed surgery.
Materials and methods. The initial search identified approximately 10,000 articles published from 1980 to September 2024. After reviewing the titles and abstracts, articles analyzing non-pharmacological methods of thromboprophylaxis, in which there are no indications of specific drugs, no indications of the outcomes of the experiment or clinical trial, as well as articles published in other languages or full-text versions of which are not published in the public domain were excluded. In total, 34 full-text articles were analyzed in the review.
Results. This article considers drugs whose pharmacological action is aimed at preventing the formation of blood clots or their destruction (antiplatelet agents, anticoagulants, fibrinolytics) and drugs that indirectly, through other mechanisms of action, can reduce the likelihood of blood clots in transplanted flaps — dextran, prostacyclin, and nitric oxide. None of the analyzed studies indicated that the use of any group of drugs can lead to improved prognosis and reliably reduce the number of perioperative thrombotic complications.
Conclusion. Higher-level studies are needed to examine the clinical use of antithrombotic drugs in microsurgery; however, given the low failure rate in current practice, a well-designed study, with all procedures performed by surgical teams with relevant experience and patients randomized to treatment groups, is needed to achieve adequate power.
About the Authors
I. Yu. ZolotukhinaRussian Federation
Inna U. Zolotukhina — orthopedic surgeon of the traumatological and orthopedic department No. 13
St. Petersburg
Competing Interests:
The authors declare no conflict of interest.
A. R. Kasimova
Russian Federation
Alina R. Kasimova — Clinical pharmacologist of the Department of Clinical Pharmacology; Cand. Sci. (Med.), associate professor of the department of Clinical Pharmacology and Evidence-Based Medicine
St. Petersburg
Competing Interests:
The authors declare no conflict of interest.
A. N. Potapov
Russian Federation
Alexander N. Potapov — Resident
St. Petersburg
Competing Interests:
The authors declare no conflict of interest.
References
1. López-Arcas JM, Arias J, Del Castillo JL, Burgueño M, Navarro I, Morán MJ, Chamorro M, Martorell V. The fibula osteomyocutaneous flap for mandible reconstruction: a 15-year experience. J Oral Maxillofac Surg. 2010 Oct;68(10):2377-84. doi: 10.1016/j.joms.2009.09.027.
2. Futran ND, Stack BC Jr. Single versus dual venous drainage of the radial forearm free flap. Am J Otolaryngol. 1996 Mar-Apr;17(2):112-7. doi: 10.1016/s0196-0709(96)90006-x.
3. Tran NV, Buchel EW, Convery PA. Microvascular complications of DIEP flaps. Plast Reconstr Surg. 2007 Apr 15;119(5):1397-1405. doi: 10.1097/01.prs.0000256045.71765.96.
4. Khouri RK, Cooley BC, Kunselman AR, Landis JR, Yeramian P, Ingram D, Natarajan N, Benes CO, Wallemark C. A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg. 1998 Sep;102(3):711-21. doi: 10.1097/00006534-199809030-00015.
5. Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003 Jun 15;110(5-6):255-8. doi: 10.1016/s0049-3848(03)00379-7.
6. Peter FW, Franken RJ, Wang WZ, Anderson GL, Schuschke DA, O'Shaughnessy MM, Banis JC, Steinau HU, Barker JH. Effect of low dose aspirin on thrombus formation at arterial and venous microanastomoses and on the tissue microcirculation. Plast Reconstr Surg. 1997 Apr;99(4):1112-21. doi: 10.1097/00006534-199704000-00030.
7. Cooley BC, Ruas EJ, Wilgis EF. Scanning electron microscopy of crush/avulsion arterial trauma:effect of heparin and aspirin administration. Microsurgery. 1987;8(1):11-6. doi: 10.1002/micr.1920080105.
8. Buckley RC, Davidson SF, Das SK. The role of various antithrombotic agents in microvascular surgery. Br J Plast Surg. 1994 Jan;47(1):20-3. doi: 10.1016/0007-1226(94)90112-0.
9. Basile AP, Fiala TG, Yaremchuk MJ, May JW Jr. The antithrombotic effects of ticlopidine and aspirin in a microvascular thrombogenic model. Plastic and Reconstructive Surgery. 1995 Jun;95(7):1258-1264. DOI: 10.1097/00006534-199506000-00018.
10. Lighthall JG, Cain R, Ghanem TA, Wax MK. Effect of postoperative aspirin on outcomes in microvascular free tissue transfer surgery. Otolaryngol Head Neck Surg. 2013 Jan;148(1):40-6. doi: 10.1177/0194599812463320.
11. Khan SA, Tayeb RK. Postoperative outcomes of aspirin in microvascular free tissue transfer surgery-A systematic review and meta-analysis. JPRAS Open. 2023 Nov 10;39:49-59. doi: 10.1016/j.jpra.2023.11.003.
12. Björk I, Lindahl U. Mechanism of the anticoagulant action of heparin. Mol Cell Biochem. 1982 Oct 29;48(3):161-82. doi: 10.1007/BF00421226.
13. Xipoleas G, Levine E, Silver L, Koch RM, Taub PJ. A survey of microvascular protocols for lower-extremity free tissue transfer I: perioperative anticoagulation. Ann Plast Surg. 2007 Sep;59(3):311-5. doi: 10.1097/SAP.0b013e31802fc217.
14. Tangphao O, Chalon S, Moreno HJ Jr, Abiose AK, Blaschke TF, Hoffman BB. Heparin-induced vasodilation in human hand veins. Clin Pharmacol Ther. 1999 Sep;66(3):232-8. doi: 10.1016/S0009-9236(99)70030-5.
15. Pugh CM, Dennis RH 2nd, Massac EA. Evaluation of intraoperative anticoagulants in microvascular free-flap surgery. J Natl Med Assoc. 1996 Oct;88(10):655-7.
16. Segna E, Bolzoni AR, Baserga C, Baj A. Free flap loss caused by heparin-induced thrombocytopenia and thrombosis (HITT): a case report and literature review. ACTA OTORHINOLARYNGOLOGICA ITALICA. 2016;36:527-533; doi: 10.14639/0392-100X-1188
17. Hudson DA, Engelbrecht G, Duminy FJ. Another method to prevent venous thrombosis in microsurgery: an in situ venous catheter. Plast Reconstr Surg. 2000 Mar;105(3):999-1003. doi: 10.1097/00006534-200003000-00024.
18. Savoie FH, Cooley BC, Gould JS. Evaluation of the effect of pharmacologic agents on crush-avulsion arterial injuries: a scanning electron microscopy study. Microsurgery. 1991;12(4):292-300. doi: 10.1002/micr.1920120413.
19. Kroll SS, Miller MJ, Reece GP, Baldwin BJ, Robb GL, Bengtson BP, Phillips MD, Kim D, Schusterman MA. Anticoagulants and hematomas in free flap surgery. Plast Reconstr Surg. 1995 Sep;96(3):643-7. doi: 10.1097/00006534-199509000-00017.
20. Liao EC, Taghinia AH, Nguyen LP, Yueh JH, May JW Jr, Orgill DP. Incidence of hematoma complication with heparin venous thrombosis prophylaxis after TRAM flap breast reconstruction. Plast Reconstr Surg. 2008 Apr;121(4):1101-1107. doi: 10.1097/01.prs.0000302454.43201.83.
21. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001 Jan;119(1 Suppl):64S-94S. doi: 10.1378/chest.119.1_suppl.64s.
22. Yousef MA, Dionigi P. Experimental Thromboprophylaxis with Low Molecular Weight Heparin After Microsurgical Revascularization. J Hand Microsurg. 2015 Dec;7(2):256-60. doi: 10.1007/s12593-015-0196-0.
23. Murthy P, Riesberg MV, Hart S, Bustillo A, Duque CS, Said S, Civantos FJ. Efficacy of perioperative thromboprophylactic agents in the maintenance of anastamotic patency and survival of rat microvascular free groin flaps. Otolaryngol Head Neck Surg. 2003 Sep;129(3):176-82. doi: 10.1016/S0194-5998(03)00603-X.
24. Zhang Y, Zhang M, Tan L, Pan N, Zhang L. The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. Prog Mol Biol Transl Sci. 2019; 163:41-53. doi: 10.1016/bs.pmbts.2019.02.004.
25. PubChem, «Fondaparinux». Просмотрено: 27 января 2025 г. [Онлайн]. Доступно на: https://pubchem.ncbi.nlm.nih.gov/compound/5282448.
26. Mehdizade T, Kelahmetoglu O, Gurkan V, Çetin G, Guneren E. Early Suspicion of Heparin-Induced Thrombocytopenia for Successful Free Flap Salvage: Reports of Two Cases. J Hand Microsurg. 2021 Jul;13(3):178-180. doi: 10.1055/s-0040-1713692.
27. Linkins LA. Heparin induced thrombocytopenia. BMJ. 2015 Jan 8;350:g7566. doi: 10.1136/bmj.g7566.
28. Samama MM. The mechanism of action of rivar-oxaban--an oral, direct Factor Xa inhibitor--compared with other anticoagulants. Thromb Res. 2011 Jun;127(6):497-504. doi: 10.1016/j.throm-res.2010.09.008.
29. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008 Jun;133(6 Suppl):160S-198S. doi: 10.1378/chest.08-0670.
30. Brouwers K, Kruit AS, Hummelink S, Ulrich DJO. Management of free flap salvage using thrombolytic drugs: A systematic review. J Plast Reconstr Aesthet Surg. 2020 Oct;73(10):1806-1814. doi: 10.1016/j.bjps.2020.05.057.
31. Conrad MH, Adams WP Jr. Pharmacologic optimization of microsurgery in the new millennium. Plast Reconstr Surg. 2001 Dec;108(7):2088-96; quiz 2097. doi: 10.1097/00006534-200112000-00041.
32. Disa JJ, Polvora VP, Pusic AL, Singh B, Cordeiro PG. Dextran-related complications in head and neck microsurgery: do the benefits outweigh the risks? A prospective randomized analysis. Plast Reconstr Surg. 2003 Nov;112(6):1534-9. doi: 10.1097/01.PRS.0000083378.58757.54.
33. Jayaprasad K, Mathew J, Thankappan K, Sharma M, Duraisamy S, Rajan S, Paul J, Iyer S. Safety and efficacy of low molecular weight dextran (dextran 40) in head and neck free flap reconstruction. J Reconstr Microsurg. 2013 Sep;29(7): 443-8. doi: 10.1055/s-0033-1343950.
34. Ridha H, Jallali N, Butler PE. The use of dextran post free tissue transfer. J Plast Reconstr Aesthet Surg. 2006;59(9):951-4. doi: 10.1016/j.bjps.2005.12.031.
35. Chiang S, Azizzadeh B, Buga G, Ignarro L, Calcaterra T, Blackwell K. Local administration of nitric oxide donor significantly impacts microvascular thrombosis. Laryngoscope. 2003 Mar;113(3):406-9. doi: 10.1097/00005537-200303000-00003.
36. Azizzadeh B, Buga GM, Berke GS, Larian B, Ignarro LJ, Blackwell KE. Inhibitors of nitric oxide promote microvascular thrombosis. Arch Facial Plast Surg. 2003 Jan-Feb;5(1):31-5. doi: 10.1001/archfaci.5.1.31.
37. Banic A, Krejci V, Erni D, Wheatley AM, Sigurdsson GH. Effects of sodium nitroprusside and phenylephrine on blood flow in free musculocutaneous flaps during general anesthesia. Anesthesiology. 1999 Jan;90(1):147-55. doi: 10.1097/00000542-199901000-00020.
38. Lee KS, Suh JD, Han SB, Yoo JC, Lee SJ, Cho SJ. The effect of aspirin and prostaglandin E(1) on the patency of microvascular anastomosis in the rats. Hand Surg. 2001 Dec;6(2):177-85. doi: 10.1142/s0218810401000643.
Review
For citations:
Zolotukhina I.Yu., Kasimova A.R., Potapov A.N. Possibilities of pharmacological thromboprophylaxis in microsurgery in real-world clinical practice. Real-World Data & Evidence. 2025;5(1):13-24. (In Russ.) https://doi.org/10.37489/2782-3784-myrwd-065. EDN: JJYBMV